

kublr

Centralizing Kubernetes and Container Operations

History

- Custom software development company
- Dozens of projects per year
- Varying target environments: clouds, on prem, hybrid
- Unified application delivery platform wanted: monitoring, logs, security, multiple env, ...

Docker and Kubernetes to the Rescue

- Docker is great, but local
- Kubernetes is great
- ... when it is set up and running
- Who sets up and operates K8S?
- Who takes care of operational aspects at scale?

Kubernetes Management Platform Wanted

- Portability cloud, on prem, isolated deployments
- Centralized multi-cluster operations
 Multiple environments (dev, prod, ...); resource
 overhead
- Reliability self-healing, cluster self-reliance, modularity
- Limited management profile cloud and K8S API
- Architecture flexible, open, pluggable
- Security, scalability, HA, DR etc.

Central Control Plane: Operations

Central Control Plane: Operations

Cluster: Self-Sufficiency

Cluster: Portability

- Everything runs in containers
- Single-binary agent
- Minimal store requirements
 - Shared, eventually consistent
 - RW files for masters, RO for nodes
 - Thus the store can be anything:
 S3, SA, NFS, rsynced dir, provided files,
- Minimal infra automation requirements
 - Configure and run Kublr agent
 - Enable access to the store
 - Can be AWS CF, Azure ARM, BOSH, Ansible, ...

Cluster: Reliability

- Rely on underlying platform only, if possible
 - ASG on AWS
 - IAM on AWS for store access
 - SA on Azure, S3 on AWS
 - ARM on Azure, CF on AWS
- Minimal infrastructure SLA tolerate temporary failures
- Resources requests and limits

Central Control Plane: Logs and Metrics

Centralized Monitoring and Logs. Why Bother?

- Prometheus and ELK are heavy
 Need at least 4-8 Gb RAM... each... per cluster
- Cloud monitoring is not always allowed
- Existing monitoring is often not container-aware
- No aggregated view and analysis
- No alerting governance

K8S Monitoring with Prometheus

- Discover nodes, services, pods via K8S API
- Query metrics from discovered endpoints
- Endpoint are accessed directly via internal cluster addresses

Centralized Monitoring

Centralized Monitoring

Centralized Monitoring

- Resource tuning limits, scale, central part limits
- Long term storage custom retention, m3db
- Sharding
- Metrics labelling pod name, container name
- Additional load on k8s API

Centralized Log Collection

The Rest

- Identity management KeyCloak Users, Authn, Autzn, SSO, RBAC
- Backup and disaster recovery
 Scheduled snapshots; k8s and apps data
 Full cluster recovery or copy
- Docker image management Nexus or Artifactory Docker registry, image scanning, isolated env, etc.

